Increasing aerosol optical depth spatial and temporal availability by merging datasets from geostationary and sun-synchronous satellites Atmospheric Measurement Techniques DOI 10.5194/amt-17-5455-2024 20 September 2024 In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models. Read more
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission Atmospheric Measurement Techniques DOI 10.5194/amt-17-5429-2024 20 September 2024 MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions. Read more
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3095-2024 20 September 2024 The eruption of the Hunga Tonga–Hunga Ha’apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events. Read more
The 2020 European Seismic Hazard Model: overview and results Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3049-2024 20 September 2024 The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe. Read more
Large-sample hydrology – a few camels or a whole caravan? Hydrology and Earth System Sciences DOI 10.5194/hess-28-4219-2024 20 September 2024 We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data. Read more
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products Atmospheric Measurement Techniques DOI 10.5194/amt-17-5301-2024 20 September 2024 ATLID (atmospheric lidar) is the lidar to be flown on the Earth Clouds and Radiation Explorer satellite (EarthCARE). EarthCARE is a joint European–Japanese satellite mission that was launched in May 2024. ATLID is an advanced lidar optimized for cloud and aerosol property profile measurements. This paper describes some of the key novel algorithms being applied to this lidar to retrieve cloud and aerosol properties. Example results based on simulated data are presented and discussed. PRO): the A-AER, A-EBD, A-TC, and A-ICE products">Read more
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models? Climate of the Past DOI 10.5194/cp-20-1989-2024 20 September 2024 We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value. Read more
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization Atmospheric Chemistry and Physics DOI 10.5194/acp-24-9939-2024 20 September 2024 Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs. Read more
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems Biogeosciences DOI 10.5194/bg-21-4099-2024 20 September 2024 Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates. Read more
Young and new water fractions in soil and hillslope waters Hydrology and Earth System Sciences DOI 10.5194/hess-28-4295-2024 20 September 2024 We use a 3-year time series of tracer data of streamflow and soils to show how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, and waters in deep subsurface layers are even older; thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes. Read more