Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory Biogeosciences DOI 10.5194/bg-21-1583-2024 15 March 2024 Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment. Read more
Hemispherically symmetric strategies for stratospheric aerosol injection Earth System Dynamics DOI 10.5194/esd-15-191-2024 13 March 2024 Injecting SO2 into the lower stratosphere can temporarily reduce global mean temperature and mitigate some risks associated with climate change, but injecting it at different latitudes and seasons would have different impacts. This study introduces new stratospheric aerosol injection (SAI) strategies and explores the importance of the choice of SAI strategy, demonstrating that it notably affects the distribution of aerosol cloud, injection efficiency, and various surface climate impacts. Read more
Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming The Cryosphere DOI 10.5194/tc-18-1033-2024 6 March 2024 Flows of water, carbon, and materials by Arctic rivers are being altered by climate warming. We used simulations from a permafrost hydrology model to investigate future changes in quantities influencing river exports. By 2100 Arctic rivers will receive more runoff from the far north where abundant soil carbon can leach in. More water will enter them via subsurface pathways particularly in summer and autumn. An enhanced water cycle and permafrost thaw are changing river flows to coastal areas. Read more
A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction Climate of the Past DOI 10.5194/cp-20-363-2024 26 February 2024 This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum. Read more
Explaining the green volcanic sunsets after the 1883 eruption of Krakatoa Atmospheric Chemistry and Physics DOI 10.5194/acp-24-2415-2024 23 February 2024 It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes. Read more
Bayesian multi-proxy reconstruction of early Eocene latitudinal temperature gradients Climate of the Past DOI 10.5194/cp-20-349-2024 21 February 2024 Large-scale palaeoclimate reconstructions are often based on sparse and unevenly sampled records, inviting potential biases. Here, we present a Bayesian hierarchical model that combines geochemical with ecological proxy data to model the latitudinal sea surface temperature gradient. Applying this model to the early Eocene climatic optimum highlights how our integrated approach can improve palaeoclimate reconstructions from datasets with limited sampling. Read more
Opinion: Aerosol remote sensing over the next 20 years Atmospheric Chemistry and Physics DOI 10.5194/acp-24-2113-2024 19 February 2024 Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth’s atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models. Read more
Detecting the human fingerprint in the summer 2022 western–central European soil drought Earth System Dynamics DOI 10.5194/esd-15-131-2024 16 February 2024 The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world. Read more
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign Atmospheric Measurement Techniques DOI 10.5194/amt-17-1061-2024 14 February 2024 NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions. ASCENDS/ABoVE campaign">Read more
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81 The Cryosphere DOI 10.5194/tc-18-705-2024 12 February 2024 The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves. Read more