A systematic exploration of satellite radar coherence methods for rapid landslide detection Natural Hazards and Earth System Sciences DOI 10.5194/nhess-20-3197-2020 25 December 2020 Satellite radar could provide information on landslide locations within days of an earthquake or rainfall event anywhere on Earth, but until now there has been a lack of systematic testing of possible radar methods, and most methods have been demonstrated using a single case study event and data from a single satellite sensor. Here we test five methods on four events, demonstrating their wide applicability and making recommendations on when different methods should be applied in the future. Read more
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series Hydrology and Earth System Sciences DOI 10.5194/hess-24-5595-2020 24 December 2020 We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring. Read more
Tectonic exhumation of the Central Alps recorded by detrital zircon in theMolasse Basin, Switzerland Solid Earth DOI 10.5194/se-11-2197-2020 23 December 2020 We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps. Read more
Evaluation of Arctic warming in mid-Pliocene climate simulations Climate of the Past DOI 10.5194/cp-16-2325-2020 22 December 2020 The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO 2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change. Read more
Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry Atmospheric Chemistry and Physics DOI 10.5194/acp-20-14043-2020 21 December 2020 Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position. Read more
Distinguishing the impacts of ozone and ozone-depleting substanceson the recent increase in Antarctic surface mass balance The Cryosphere DOI 10.5194/tc-14-4135-2020 18 December 2020 The increase in Antarctic surface mass balance (SMB, precipitation vs. evaporation/sublimation) is projected to mitigate sea-level rise. Here we show that nearly half of this increase over the 20th century is attributed to stratospheric ozone depletion and ozone-depleting substance (ODS) emissions. Our results suggest that the phaseout of ODS by the Montreal Protocol, and the recovery of stratospheric ozone, will act to decrease the SMB over the 21st century and the mitigation of sea-level rise. Read more
Earth Girl Volcano: characterizing and conveying volcanic hazard complexity in an interactive casual game of disaster preparedness and response Geoscience Communication DOI 10.5194/gc-3-343-2020 17 December 2020 Earth Girl Volcano is a casual strategy interactive game about saving communities at risk of volcanic hazards. The easy-to-play game features a friendly animated visual style and an engaging simulation of volcanic events. The game was designed by a multidisciplinary team to appeal to mainstream non-technical audiences, and it was inspired by the experiences of disaster survivors and civil defense teams. Players can learn through gameplay about disaster preparedness and response. Read more
The baseline wander correction based on the improved ensemble empirical mode decomposition (EEMD) algorithm for groundedelectrical source airborne transient electromagnetic signals Geoscientific Instrumentation, Methods and Data Systems DOI 10.5194/gi-9-443-2020 16 December 2020 The baseline wander has special characteristics, such as being low frequency, large amplitude, non-periodic, and non-stationary. It is caused by the receiving coil motion and always exists in the process of data acquisition. The proposed method can be used to solve similar problems. This paper has the following highlights: (1) the method can be used to process non-periodic and non-stationary signals; (2) the method is adaptive to satisfy the stopping criterion based on the measured signal. EEMD) algorithm for groundedelectrical source airborne transient electromagnetic signals">Read more
Millennial-scale atmospheric CO2 variations during the Marine Isotope Stage 6 period (190–135 ka) Climate of the Past DOI 10.5194/cp-16-2203-2020 15 December 2020 We reconstruct atmospheric CO 2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO 2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH 4 jumps, the latter reflecting rapid warming in the Northern Hemisphere. Read more
Reduced global warming from CMIP6 projections when weighting models by performance and independence Earth System Dynamics DOI 10.5194/esd-11-995-2020 14 December 2020 In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean. Read more