Evaluating the dependence structure of compound precipitation and wind speed extremes Earth System Dynamics DOI 10.5194/esd-12-1-2021 26 January 2021 Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe. Read more
Glider-based observations of CO2 in the Labrador Sea Ocean Science DOI 10.5194/os-17-1-2021 25 January 2021 This paper describes challenges around the direct measurement of CO 2 in the ocean using ocean gliders. We discuss our method of using multiple sensor platforms as test beds to carry out observing experiments and highlight the implications of our study for future glider missions. We also show high-resolution measurements and discuss challenges and lessons learned in the context of future ocean gas measurements. Read more
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat Biogeosciences DOI 10.5194/bg-18-25-2021 22 January 2021 This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought. Read more
Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis Climate of the Past DOI 10.5194/cp-16-2547-2020 21 January 2021 The dating technique of 14 C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems. Read more
Long-term deposition and condensation ice-nucleatingparticle measurements from four stations across the globe Atmospheric Chemistry and Physics DOI 10.5194/acp-20-15983-2020 20 January 2021 Long-term ice-nucleating particle (INP) data are presented from four semi-pristine sites located in the Amazon, the Caribbean, Germany and the Arctic. Average INP concentrations did not differ by orders of magnitude between the sites. For all sites short-term variability dominated the time series, which lacked clear trends and seasonalities. Common drivers to explain the INP levels and their variations could not be identified, illustrating the complex nature of heterogeneous ice nucleation. Read more
Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth System Dynamics DOI 10.5194/esd-11-1233-2020 19 January 2021 As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO 2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data. Read more
Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica The Cryosphere DOI 10.5194/tc-14-4603-2020 18 January 2021 The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km 3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt. Read more
Downsizing parameter ensembles for simulations of rare floods Natural Hazards and Earth System Sciences DOI 10.5194/nhess-20-3521-2020 15 January 2021 This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks. Read more
Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing Earth System Dynamics DOI 10.5194/esd-11-1209-2020 14 January 2021 Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m 2 on average. Read more
Quantifying CO2 emissions of a city with the Copernicus Anthropogenic CO2 Monitoring satellite mission Atmospheric Measurement Techniques DOI 10.5194/amt-13-6733-2020 13 January 2021 The European CO2M mission is a proposed constellation of CO 2 imaging satellites expected to monitor CO 2 emissions of large cities. Using synthetic observations, we show that a constellation of two or more satellites should be able to quantify Berlin’s annual emissions with 10–20 % accuracy, even when considering atmospheric transport model errors. We therefore expect that CO2M will make an important contribution to the monitoring and verification of CO 2 emissions from cities worldwide. Read more