Continental-scale controls on soil organic carbon across sub-Saharan Africa SOIL DOI 10.5194/soil-7-305-2021 9 August 2021 We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions. Read more
Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes Atmospheric Chemistry and Physics DOI 10.5194/acp-21-9669-2021 6 August 2021 The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate. Read more
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models Biogeosciences DOI 10.5194/bg-18-3823-2021 4 August 2021 In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations. Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics. Read more
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum Biogeosciences DOI 10.5194/bg-18-3657-2021 2 August 2021 We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing. Read more
Rarefied particle motions on hillslopes – Part 1: Theory Earth Surface Dynamics DOI 10.5194/esurf-9-539-2021 30 July 2021 Sediment particles skitter down steep hillslopes on Earth and Mars. Particles gain speed in going downhill but are slowed down and sometimes stop due to collisions with the rough surface. The likelihood of stopping depends on the energetics of speeding up (heating) versus slowing down (cooling). Statistical physics predicts that particle travel distances are described by a generalized Pareto distribution whose form varies with the Kirkby number – the ratio of heating to cooling. Read more
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty SOIL DOI 10.5194/soil-7-217-2021 28 July 2021 This paper focuses on the production of global maps of soil properties with quantified spatial uncertainty, as implemented in the SoilGrids version 2.0 product using DSM practices and adapting them for global digital soil mapping with legacy data. The quantitative evaluation showed metrics in line with previous studies. The qualitative evaluation showed that coarse-scale patterns are well reproduced. The spatial uncertainty at global scale highlighted the need for more soil observations. Read more
Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect The Cryosphere DOI 10.5194/tc-15-2601-2021 26 July 2021 We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide. Read more
A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0 Geoscientific Model Development DOI 10.5194/gmd-14-3553-2021 23 July 2021 Lava flows present a natural hazard to communities around volcanoes and are usually slow-moving (< 1-5 cm/s). Lava flows during the 2018 eruption of Kilauea volcano, Hawai’i, however, reached speeds as high as 11 m/s. To investigate these dynamics we develop a new lava flow computer model that incorporates a nonlinear expression for the fluid viscosity. Model results indicate that the lava flows at Site 8 of the eruption displayed shear thickening behavior due to the flow’s high bubble content. Read more
Fracking bad language – hydraulic fracturing and earthquake risks Geoscience Communication DOI 10.5194/gc-4-303-2021 21 July 2021 The potential for hydraulic fracturing (fracking) to induce seismicity is a topic of widespread interest. We find that terms used to describe induced seismicity are poorly defined and ambiguous and do not translate into everyday language. Such bad language has led to challenges in understanding, perceiving, and communicating risks around seismicity and fracking. Our findings and recommendations are relevant to other geoenergy topics that are potentially associated with induced seismicity. Read more
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities Biogeosciences DOI 10.5194/bg-18-3331-2021 19 July 2021 Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions. Read more