Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept Hydrology and Earth System Sciences DOI 10.5194/hess-28-4427-2024 11 October 2024 Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding Read more
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT Atmospheric Measurement Techniques DOI 10.5194/amt-17-5785-2024 4 October 2024 We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes. Read more
The effects of land use on soil carbon stocks in the UK Biogeosciences DOI 10.5194/bg-21-4301-2024 4 October 2024 We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify. Read more
Calibrating estimates of ionospheric long-term change Annales Geophysicae DOI 10.5194/angeo-42-395-2024 27 September 2024 Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases. Read more
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3173-2024 23 September 2024 Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management. Read more
Increasing aerosol optical depth spatial and temporal availability by merging datasets from geostationary and sun-synchronous satellites Atmospheric Measurement Techniques DOI 10.5194/amt-17-5455-2024 20 September 2024 In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models. Read more
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission Atmospheric Measurement Techniques DOI 10.5194/amt-17-5429-2024 20 September 2024 MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions. Read more
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3095-2024 20 September 2024 The eruption of the Hunga Tonga–Hunga Ha’apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events. Read more
The 2020 European Seismic Hazard Model: overview and results Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3049-2024 20 September 2024 The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe. Read more
Large-sample hydrology – a few camels or a whole caravan? Hydrology and Earth System Sciences DOI 10.5194/hess-28-4219-2024 20 September 2024 We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data. Read more