Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA Earth Surface Dynamics DOI 10.5194/esurf-11-1251-2023 4 December 2023 In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snow melt; temperature modelling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost. Read more
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere Atmospheric Chemistry and Physics DOI 10.5194/acp-23-14949-2023 1 December 2023 To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized. Read more
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance Hydrology and Earth System Sciences DOI 10.5194/hess-27-4257-2023 29 November 2023 Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale. Read more
Constraining an eddy energy dissipation rate due to relative wind stress for use in energy budget-based eddy parameterisations Ocean Science DOI 10.5194/os-19-1669-2023 27 November 2023 The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean. Read more
Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances Atmospheric Measurement Techniques DOI 10.5194/amt-16-5697-2023 24 November 2023 Measurements of the emission rate of a gas or gases from point and area sources are important in a range of monitoring applications. We demonstrate a method for rapid quantification of the emission rate of multiple gases using a spatially scannable open-path sensor. The open-path spectrometer measures the total column density of gases between the spectrometer and a retroreflector mounted on an uncrewed aerial vehicle (UAV). By scanning the UAV altitude, we can determine the total gas emissions. Read more
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement Biogeosciences DOI 10.5194/bg-20-4669-2023 22 November 2023 Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive. Read more
Land cover and management effects on ecosystem resistance to drought stress Earth System Dynamics DOI 10.5194/esd-14-1211-2023 20 November 2023 Ecosystem resistance reflects their susceptibility during adverse conditions and can be changed by land management. We estimate ecosystem resistance to drought and temperature globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests or they are harvested. Old-growth trees tend to be more resistant in some forests and crops benefit from irrigation during drought periods. Read more
Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario Ocean Science DOI 10.5194/os-19-1595-2023 17 November 2023 How much the Antarctic ice shelf basal melt rate can increase in response to global warming remains an open question. To achieve this, we compared an ocean simulation under present-day atmospheric condition to a one under late 23rd century atmospheric conditions. The ocean response to the perturbation includes a decrease in the production of cold dense water and an increased intrusion of warmer water onto the continental shelves. This induces a substantial increase in ice shelf basal melt rates. Read more
Universal differential equations for glacier ice flow modelling Geoscientific Model Development DOI 10.5194/gmd-16-6671-2023 15 November 2023 We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise. Read more
Machine learning for numerical weather and climate modelling: a review Geoscientific Model Development DOI 10.5194/gmd-16-6433-2023 13 November 2023 Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional methods. In this review, we have summarized the use of ML in weather and climate modelling over time; provided an overview of key ML concepts, methodologies, and terms; and suggested promising avenues for further research. Read more