The six rights of how and when to test for soil C saturation SOIL DOI 10.5194/soil-10-275-2024 29 April 2024 Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation. Read more
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions Biogeosciences DOI 10.5194/bg-21-2051-2024 26 April 2024 Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally. Read more
Carbon budget concept and its deviation through the pulse response lens Earth System Dynamics DOI 10.5194/esd-15-387-2024 22 April 2024 The carbon budget approach is based on a close linear relationship between the global temperature and cumulative emissions. This article reinterprets the carbon budget approach through the lens of the temperature response to an emission pulse in the role of a Green’s function, or as a generalization of TCRE. It shows that inspecting the simple model’s pulse response allows for a prediction of deviations for any possible emission scenario and derivation of a nonlinear carbon budget equation. Read more
Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera Atmospheric Measurement Techniques DOI 10.5194/amt-17-2257-2024 19 April 2024 Imaging carbon dioxide (CO2) plumes of anthropogenic sources from planes and satellites has proven valuable for detecting emitters and monitoring climate mitigation efforts. We present the first images of CO2 plumes taken with a ground-based spectral camera, observing a coal-fired power plant as a validation target. We develop a technique to find the source emission strength with an hourly resolution, which reasonably agrees with the expected emissions under favorable conditions. Read more
HydroFATE (v1): a high-resolution contaminant fate model for the global river system Geoscientific Model Development DOI 10.5194/gmd-17-2877-2024 16 April 2024 Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide. Read more
Rates of palaeoecological change can inform ecosystem restoration Biogeosciences DOI 10.5194/bg-21-1629-2024 12 April 2024 Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions. Read more
Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates The Cryosphere DOI 10.5194/tc-18-1467-2024 10 April 2024 This study uses airborne radar data and satellite imagery to map mountainous topography hidden beneath the Greenland Ice Sheet. We find that the landscape records the former extent and configuration of ice masses that were restricted to areas of high topography. Computer models of ice flow indicate that valley glaciers eroded this landscape millions of years ago when local air temperatures were at least 4 °C higher than today and Greenland’s ice volume was < 10 % of that of the modern ice sheet. Read more
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS Geochronology DOI 10.5194/gchron-6-89-2024 8 April 2024 Chemical abrasion (CA) is a technique that reduces or eliminates the effects of Pb loss in zircon U–Pb geochronology. However, CA has yet to be applied to large-n detrital zircon (DZ) analyses. We show that CA does not negatively impact or systematically bias U–Pb dates, improves the resolution of age populations defined by 206Pb/238U dates, and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates. Read more
Extreme melting at Greenland’s largest floating ice tongue The Cryosphere DOI 10.5194/tc-18-1333-2024 5 April 2024 The 79° North Glacier in Greenland has experienced significant changes over the last decades. Due to extreme melt rates, the ice has thinned significantly in the vicinity of the grounding line, where a large subglacial channel has formed since 2010. We attribute these changes to warm ocean currents and increased subglacial discharge from surface melt. However, basal melting has decreased since 2018, indicating colder water inflow into the cavity below the glacier. Read more
Solar radiation modification challenges decarbonization with renewable solar energy Earth System Dynamics DOI 10.5194/esd-15-307-2024 3 April 2024 Most solar radiation modification (SRM) simulations assume no physical coupling between mitigation and SRM. We analyze the impact of SRM on photovoltaic (PV) and concentrated solar power (CSP) and find that almost all regions have reduced PV and CSP potential compared to a mitigated or unmitigated scenario, especially in the middle and high latitudes. This suggests that SRM could pose challenges for meeting energy demands with solar renewable resources. Read more