Potential for equation discovery with AI in the climate sciences Earth System Dynamics DOI 10.5194/esd-16-475-2025 31 March 2025 AI is impacting science, providing key data insights, but most algorithms are statistical requiring cautious "out-of-sample" extrapolation. Yet climate research concerns predicting future climatic states. We consider a new method of AI-led equation discovery. Equations offer process interpretation and more robust predictions. We recommend this method for climate analysis, suggesting illustrative application to atmospheric convection, land–atmosphere CO2 flux, and global ocean circulation models. Read more
Composite model-based estimate of the ocean carbon sink from 1959 to 2022 Biogeosciences DOI 10.5194/bg-22-1631-2025 28 March 2025 The ocean is a major natural carbon sink. Despite its importance, estimates of the ocean carbon sink remain uncertain. Here, I present a hybrid model estimate of the ocean carbon sink from 1959 to 2022. By combining ocean models in hindcast mode and Earth system models, I keep the strength of each approach and remove the respective weaknesses. This composite model estimate is similar in magnitude to the best estimate of the Global Carbon Budget but 70 % less uncertain. Read more
Modulation of the northern polar vortex by the Hunga Tonga–Hunga Ha'apai eruption and the associated surface response Atmospheric Chemistry and Physics DOI 10.5194/acp-25-3623-2025 28 March 2025 In January 2022, the Hunga Tonga–Hunga Ha'apai (HTHH) volcano erupted, sending massive amounts of water vapour into the atmosphere. This event had a significant impact on stratospheric and lower-mesospheric chemical composition. Two years later, stratospheric conditions were disturbed during so-called sudden stratospheric warmings. Here we simulate a novel pathway by which this water-rich eruption may have contributed to conditions during these events and consequently impacted the surface climate. Read more
The glaciers of the Dolomites: the last 40 years of melting The Cryosphere DOI 10.5194/tc-19-1335-2025 26 March 2025 We have reconstructed the multi-decadal (1980s–2023) ice mass changes for all the current mountain glaciers in the Dolomites. We used historical aerial photographs, drone surveys, and lidar to fill the glaciological data gap for the region. We observed an alarming decline in both glacier area and volume, with some of the glaciers showing smaller losses due to local topography and debris cover feedback. We strongly recommend more specific monitoring of these glaciers. Read more
Decadal changes in phytoplankton functional composition in the Eastern English Channel: possible upcoming major effects of climate change Ocean Science DOI 10.5194/os-21-679-2025 24 March 2025 This study provides the first assessment of decadal changes in the whole phytoplankton community, addressed by flow cytometry, in the highly productive waters of the Strait of Dover. A significant surface seawater temperature increase of 1°C, associated with an important change in the nutrient concentration and balance, has triggered a change in the phytoplankton communities, characterized by a higher total abundance and an increasing proportion of the smallest cells (picroeukaryotes and picocyanobacteria). Read more
Reconstruction of Holocene and Last Interglacial vegetation dynamics and wildfire activity in southern Siberia Climate of the Past DOI 10.5194/cp-21-661-2025 21 March 2025 We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends during the Last Interglacial (LIG) (124.1–118.8 ka) and the Holocene (10–0 ka). Wildfires were more prevalent during the LIG than the Holocene and were supported by fire-prone species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires. Read more
Modelled surface climate response to effusive Icelandic volcanic eruptions: sensitivity to season and size Atmospheric Chemistry and Physics DOI 10.5194/acp-25-2989-2025 19 March 2025 We use an Earth system model to systematically investigate the climate response to high-latitude effusive volcanic eruptions as a function of eruption season and size, with a focus on the Arctic. We find that different seasons strongly modulate the climate response, with Arctic surface warming observed in winter and cooling in summer. Additionally, as eruptions increase in terms of sulfur dioxide emissions, the climate response becomes increasingly insensitive to variations in emission strength. Read more
Meteorological ingredients of heavy precipitation and subsequent lake-filling episodes in the northwestern Sahara Hydrology and Earth System Sciences DOI 10.5194/hess-29-1395-2025 17 March 2025 The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help assess future water availability. Read more
Assessing Lagrangian coherence in atmospheric blocking Nonlinear Processes in Geophysics DOI 10.5194/npg-32-51-2025 28 February 2025 We identify spatially coherent air streams into atmospheric blockings, which are important weather phenomena. By adapting mathematical methods to the atmosphere, we confirm previous findings. Our work shows that spatially coherent air streams featuring cloud formation correlate with strengthening of the blocking. The developed framework also allows for statements about the spatial behavior of the air parcels as a whole and indicates that blockings reduce the dispersion of the air parcels. Read more
Evaluating F10.7 and F30 radio fluxes as long-term solar proxies of energy deposition in the thermosphere Annales Geophysicae DOI 10.5194/angeo-43-175-2025 28 February 2025 We study how well the F10.7 and F30 solar radio fluxes have represented solar energy input in the thermosphere in the last 60 years. We found that increased saturation of radio fluxes at recent solar minima leads to an overestimation of solar energy, which changes the relation between thermospheric parameters and F10.7, but this is not an issue for F30 because of a relative increase in F30 with respect to F10.7. This explains why F30 has been found to represent solar energy better than F10.7. Read more