Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry The Cryosphere DOI 10.5194/tc-17-4079-2023 15 September 2023 We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones. Read more
High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France Biogeosciences DOI 10.5194/bg-20-3803-2023 13 September 2023 This study analyses the ecological impact of the 2022 summer fire season in France by using high-resolution satellite data. The total biomass loss was 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests. While Mediterranean forests had a lower biomass loss, there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. This result revisits the distinctiveness of the 2022 fire season. Read more
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland The Cryosphere DOI 10.5194/tc-17-3933-2023 11 September 2023 The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet’s mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analysed how they induce local melting and ice accelerations. Read more
Analysis of in situ measurements of electron, ion and neutral temperatures in the lower thermosphere–ionosphere Annales Geophysicae DOI 10.5194/angeo-41-339-2023 8 September 2023 The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analysed. Potential mechanisms that could trigger these events are proposed. Read more
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties Hydrology and Earth System Sciences DOI 10.5194/hess-27-3221-2023 6 September 2023 We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins. Read more
Opinion: Atmospheric multiphase chemistry – past, present, and future Atmospheric Chemistry and Physics DOI 10.5194/acp-23-9765-2023 4 September 2023 With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modelling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighbouring disciplines. Read more
Atmospheric CO2 inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions Atmospheric Chemistry and Physics DOI 10.5194/acp-23-9685-2023 1 September 2023 The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO2 observations to quantify Amazonian carbon emissions (2010–2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~ 50 % of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period. Read more
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022 The Cryosphere DOI 10.5194/tc-17-3661-2023 25 August 2023 The Glacier Loss Day (GLD) is the day on which all mass gained from the accumulation period is lost, and the glacier loses mass irrecoverably for the rest of the mass balance year. In 2022, the GLD was already reached on 23 June at Hintereisferner (Austria), and this led to a record-breaking mass loss. We introduce the GLD as a gross yet expressive indicator of the glacier’s imbalance with a persistently warming climate. Read more
A rise in HFC-23 emissions from eastern Asia since 2015 Atmospheric Chemistry and Physics DOI 10.5194/acp-23-9401-2023 23 August 2023 Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008-2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions. Read more
Stagnant ice and age modelling in the Dome C region, Antarctica The Cryosphere DOI 10.5194/tc-17-3461-2023 21 August 2023 We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood. Read more