Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances Atmospheric Measurement Techniques DOI 10.5194/amt-16-5697-2023 24 November 2023 Measurements of the emission rate of a gas or gases from point and area sources are important in a range of monitoring applications. We demonstrate a method for rapid quantification of the emission rate of multiple gases using a spatially scannable open-path sensor. The open-path spectrometer measures the total column density of gases between the spectrometer and a retroreflector mounted on an uncrewed aerial vehicle (UAV). By scanning the UAV altitude, we can determine the total gas emissions. Read more
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement Biogeosciences DOI 10.5194/bg-20-4669-2023 22 November 2023 Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive. Read more
Land cover and management effects on ecosystem resistance to drought stress Earth System Dynamics DOI 10.5194/esd-14-1211-2023 20 November 2023 Ecosystem resistance reflects their susceptibility during adverse conditions and can be changed by land management. We estimate ecosystem resistance to drought and temperature globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests or they are harvested. Old-growth trees tend to be more resistant in some forests and crops benefit from irrigation during drought periods. Read more
Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario Ocean Science DOI 10.5194/os-19-1595-2023 17 November 2023 How much the Antarctic ice shelf basal melt rate can increase in response to global warming remains an open question. To achieve this, we compared an ocean simulation under present-day atmospheric condition to a one under late 23rd century atmospheric conditions. The ocean response to the perturbation includes a decrease in the production of cold dense water and an increased intrusion of warmer water onto the continental shelves. This induces a substantial increase in ice shelf basal melt rates. Read more
Universal differential equations for glacier ice flow modelling Geoscientific Model Development DOI 10.5194/gmd-16-6671-2023 15 November 2023 We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise. Read more
Machine learning for numerical weather and climate modelling: a review Geoscientific Model Development DOI 10.5194/gmd-16-6433-2023 13 November 2023 Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional methods. In this review, we have summarized the use of ML in weather and climate modelling over time; provided an overview of key ML concepts, methodologies, and terms; and suggested promising avenues for further research. Read more
ESD Ideas: Arctic amplification’s contribution to breaches of the Paris Agreement Earth System Dynamics DOI 10.5194/esd-14-1165-2023 10 November 2023 The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later. Read more
Opinion: A critical evaluation of the evidence for aerosol invigoration of deep convection Atmospheric Chemistry and Physics DOI 10.5194/acp-23-13791-2023 8 November 2023 As atmospheric particles called aerosols increase in number, the number of droplets in clouds tends to increase, which has been theorized to increase storm intensity. We critically evaluate the evidence for this theory, showing that flaws and limitations of previous studies coupled with unaddressed cloud process complexities draw it into question. We provide recommendations for future observations and modelling to overcome current uncertainties. Read more
Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline Atmospheric Chemistry and Physics DOI 10.5194/acp-23-13735-2023 6 November 2023 Sea salt aerosol is an important marine aerosol that may be produced in greater quantities in coastal regions than over the open ocean. This study observed these particles along the windward coastline of O’ahu, Hawai’i, to understand how wind and waves influence their production and dispersal. Overall, wave heights were the strongest variable correlated with changes in aerosol concentrations, while wind speeds played an important role in their horizontal dispersal and vertical mixing. Read more
Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation Climate of the Past DOI 10.5194/cp-19-2177-2023 3 November 2023 Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed. Read more