Toward generalized Milankovitch theory (GMT) Climate of the Past DOI 10.5194/cp-20-151-2024 10 January 2024 Despite significant progress in modelling Quaternary climate dynamics, a comprehensive theory of glacial cycles is still lacking. Here, using the results of model simulations and data analysis, I present a framework of the generalized Milankovitch theory (GMT), which further advances the concept proposed by Milutin Milankovitch over a century ago. The theory explains a number of facts which were not known during Milankovitch time’s, such as the 100 kyr periodicity of the late Quaternary. Read more
The additionality problem of ocean alkalinity enhancement Biogeosciences DOI 10.5194/bg-21-261-2024 8 January 2024 Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities. Read more
Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya Earth Surface Dynamics DOI 10.5194/esurf-12-135-2024 5 January 2024 Using satellite images, we show that, unlike other examples of earthquake-affected rivers, the rivers of central Nepal experienced little increase in sedimentation following the 2015 Gorkha earthquake. Instead, a catastrophic flood occurred in 2021 that buried towns and agricultural land under up to 10 m of sediment. We show that intense storms remobilised glacial sediment from high elevations causing much a greater impact than flushing of earthquake-induced landslides. Read more
Opinion: The importance of historical and paleoclimate aerosol radiative effects Atmospheric Chemistry and Physics DOI 10.5194/acp-24-533-2024 3 January 2024 Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols interacted with the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem. Read more
Quantifying particulate matter optical properties and flow rate in industrial stack plumes from the PRISMA hyperspectral imager Atmospheric Measurement Techniques DOI 10.5194/amt-17-57-2024 1 January 2024 We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method. Read more
Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments Geochronology DOI 10.5194/gchron-6-1-2024 29 December 2023 Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss. Read more
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats Biogeosciences DOI 10.5194/bg-21-13-2024 27 December 2023 This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array. Read more
Cost estimation for the monitoring instrumentation of landslide early warning systems Natural Hazards and Earth System Sciences DOI 10.5194/nhess-23-3913-2023 25 December 2023 A new approach for the deployment of landslide early warning systems (LEWSs) is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify exposed locations. We estimate the cost of monitoring sensors and demonstrate that LEWSs could be installed with a budget ranging from EUR 5 to EUR 41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outline the challenges and opportunities for successful LEWS implementation. Read more
The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change Geoscientific Model Development DOI 10.5194/gmd-16-7461-2023 22 December 2023 Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections. Read more
The Indonesian Throughflow circulation under solar geoengineering Earth System Dynamics DOI 10.5194/esd-14-1317-2023 20 December 2023 The Indonesia Throughflow is an important pathway connecting the Pacific and Indian oceans and is part of a wind-driven circulation that is expected to reduce under greenhouse gas forcing. Solar dimming and sulfate aerosol injection geoengineering may reverse this effect. But stratospheric sulfate aerosols affect winds more than simply ``shading the sun’‘; they cause a reduction in water transport similar to that we simulate for a scenario with unabated greenhouse gas emissions. Read more