Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign Atmospheric Measurement Techniques DOI 10.5194/amt-17-1061-2024 14 February 2024 NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions. Read more
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81 The Cryosphere DOI 10.5194/tc-18-705-2024 12 February 2024 The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves. Read more
Design and rocket deployment of a trackable pseudo-Lagrangian drifter-based meteorological probe into the Lawrence/Linwood EF4 tornado and mesocyclone on 28 May 2019 Atmospheric Measurement Techniques DOI 10.5194/amt-17-943-2024 9 February 2024 A custom lightweight, miniaturized, and trackable meteorological probe was launched by a model rocket into the inflow region of an EF4, long-tracked tornado south of Lawrence, Kansas, on 28 May 2019 and sampled tornado core flow. The rocket reached apogee at 439 m a.g.l., releasing the “pseudo-Lagrangian drifter” by parachute directly into the tornado vortex. The probe reached a three-dimensional (3D) speed of 85.1 m s−1 in the first revolution around the tornado, measured an altitude-corrected pressure deficit of −113.5 hPa at 475 m a.s.l., and sampled a tornadic updraft speed of 65.0 m s−1. The probe then transitioned to an environment exhibiting a more tilted ascent above an altitude of 4300 m a.s.l. at speeds up to 84.0 m s−1 to a maximum altitude of 11 914 m a.s.l. 1 Hz pressure, temperature, relative humidity, GPS, acceleration, gyroscope, and magnetometer data for the flight were transmitted in real time to a ground station until 10 680 m a.s.l. and the probe landed 51 km northeast of the launch position. The probe was recovered without damage, which is attributed to the pseudo-Lagrangian drifter design, and then higher-resolution and complete 10 Hz data were downloaded for the flight. This novel deployment method and design facilitate data collection in real time from within tornadoes, the mesocyclone, and downdraft without requiring the probes to be recovered or for researchers to enter the circulation to deploy equipment. Read more
An inter-comparison of approaches and frameworks to quantify irrigation from satellite data Hydrology and Earth System Sciences DOI 10.5194/hess-28-441-2024 7 February 2024 This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates. Read more
Long-term aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar Atmospheric Measurement Techniques DOI 10.5194/amt-17-921-2024 5 February 2024 This study offers a long-term overview of aerosol particle depolarization ratio at the wavelength of 1565 nm obtained from vertical profiling measurements by Halo Doppler lidars during 4 years at four different locations across Finland. Our observations support the long-term usage of Halo Doppler lidar depolarization ratio such as the detection of aerosols that may pose a safety risk for aviation. Long-range Saharan dust transport and pollen transport are also showcased here. Read more
GC Insights: Fostering transformative change for biodiversity restoration through transdisciplinary research Geoscience Communication DOI 10.5194/gc-7-57-2024 2 February 2024 The world is facing a critical issue of biodiversity loss and ecosystem degradation, despite efforts to address it. While positive steps are being taken in the adoption of comprehensive conservation policies, more effective science-for-policy approaches are necessary to foster connectivity, engage communities, and promote transformative change. This study outlines how scientists can drive impactful change within and beyond their communities to contribute to meeting global biodiversity targets. Read more
Influence of cohesive clay on wave–current ripple dynamics captured in a 3D phase diagram Earth Surface Dynamics DOI 10.5194/esurf-12-231-2024 19 January 2024 The seabed can change its shape from flat to undulating, known as ripples; the change rate depends on whether the bed is composed of sticky mud. This study, based on experiments, shows a strong reduction in ripple size when the initial mud content is over 10.6 %. This could help geologists better interpret ancient sea conditions. We present a new model to predict ripple size by considering sticky mud. It should help engineers to describe the behaviour of the seabed when sticky mud is present. Read more
Future water storage changes over the Mediterranean, Middle East, and North Africa in response to global warming and stratospheric aerosol intervention Earth System Dynamics DOI 10.5194/esd-15-91-2024 17 January 2024 Water storage (WS) plays a profound role in the lives of people in the Middle East and North Africa as well as Mediterranean climate “hot spots”. WS change by greenhouse gas (GHG) warming is simulated with and without stratospheric aerosol intervention (SAI). WS significantly increases in the Arabian Peninsula and decreases around the Mediterranean under GHG. While SAI partially ameliorates GHG impacts, projected WS increases in dry regions and decreases in wet areas relative to present climate. Read more
GPROF V7 and beyond: assessment of current and potential future versions of the GPROF passive microwave precipitation retrievals against ground radar measurements over the continental US and the Pacific Ocean Atmospheric Measurement Techniques DOI 10.5194/amt-17-515-2024 15 January 2024 The latest version of the GPROF retrieval algorithm that produces global precipitation estimates using observations from the Global Precipitation Measurement mission is validated against ground-based radars. The validation shows that the algorithm accurately estimates precipitation on scales ranging from continental to regional. In addition, we validate candidates for the next version of the algorithm and identify principal challenges for further improving space-borne rain measurements. Read more
High-resolution spatial patterns and drivers of terrestrial ecosystem carbon dioxide, methane, and nitrous oxide fluxes in the tundra Biogeosciences DOI 10.5194/bg-21-335-2024 12 January 2024 Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale. Read more