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We performed a triaxial experiment at sequentially increasing confining pressures (Pc = 60, 80, 100 
MPa) on a saw- cut sample of Carrara marble.

• Axial DSS measurements showed extensional strain during confinement. Stylus profilometry revealed a central asperity with h/L = 0.1%. This strain heterogeneity
due to the asperity was further confirmed by our FEM model. This asperity dominated the contact conditions and led to dynamic nucleation (DSE).

• After the DSE, the central asperity was worn and gouge was deposited. The DSS fp strain decreased. The new contact conditions were dominated by the
gouge and no dynamic nucleation was observed.  The vs gouge(4) resulted to (a-b) changes and therefore aseismic conditions.
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Figure 2. Temporal evolution of the confining pressure Pc and differential stress σ1−σ3 during the experiment. The three frictional 
tests are depicted with Pc,1, Pc,2, and Pc,3 and the stick slip event DSE. 
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Figure 1. (a) Schematic representation of the saw-cut sample of Carrara marble under triaxial loading. The location of the FO 
cables attached to the sample’s surface is shown as black and purple curves on the hanging wall and as cyan and black curves 
on the footwall. (b) The distributed strain sensing (DSS) layout is shown on an unwrapped perspective.

Faults in nature exhibit complex surface characteristics, such as the presence of contact asperities, 
which affect the potential for earthquake nucleation. A common metric to study frictional stability is 
the nucleation size h*, which can change due to spatial heterogeneity(1) and wear. Here we use 
novel laboratory methods to investigate parameters controlling h* (2,3) and how they likely changed 
during our experiment. Wear created surface conditions that eliminated off-fault strain 
accommodation and nullified the asperities seismogenic potential of the fault.
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• 𝐺 : Shear modulus

• 𝑏 − 𝑎 : Rate and state friction parameter(3)

Figure 3. Spatio-temporal evolution of the DSS axial strain 
of the hanging wall (HW). 

Figure 4. (a) FEM model used to simulate contact 
stresses in a triaxial with curved interface geometries. 
(b) Axial stress (LE22 in ABAQUS) through the sample
for confining pressure Pc,1= 60 MPa.

Pc,1: The fault was seismic with nucleation size h0*< L
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Figure 6 . Spatio-temporal evolution of fault parallel strain (DSS fp strain) of FW during the three shearing phases of the 
peak friction experiment. 

Pc,2, Pc,3 : Our hypothesis that increased normal stress σn would lead to smaller 
nucleation size h* and therefore dynamic nucleation was not confirmed. 
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The fault has an initial curvature ratio of h/L= 0.1 %. This central asperity affected the 
DSS axial strain and dominated the contact conditions at Pc,1 (A,B).  
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Figure 7. Optical Profilometry images of two sections in the center of the central asperity of the HW (a) pre-experimental 
(b) post-experimental and (G1) a gouge location. 

The central asperity smoothened due to wear after the DSE. Gouge has been deposited 
closer to the fault periphery. The gouge accommodates strain in the shear bands, resulting in 
low DSS fault parallel strain.

uε= du/dx u
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Figure 5. Height measurements with stylus profilometry of the HW 
fault interface (pre and post experimental).
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• 𝐷! : Critical Slip distance

• 𝜎" : Normal stress

Figure 9. Transmitted light micrograph of a 
gouge shear band (by Verberne et al., 2014).  
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Figure 8. Schematics of the effect of gouge on the strain 
and slip during the subsequent steps of the experiment. 
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Figure 6. Image of the post-mortem 
fault surface of the HW.
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The accumulated DSS fault parallel 
strain decreased in the subsequent 
confining pressure steps. 

Laboratory Insight into the Evolution of the 
Seismic Potential of an Asperity due to Wear


