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Motivation

Case study: Heatwave 2003

➢ Meteorological factors, such as variations in weather 

patterns and extreme climate events, are one of the main 

drivers of interannual variations in carbon uptake in 

terrestrial ecosystems.

➢ However, quantifying the impact of multi-scale 

meteorological events, their timing and duration on the 

carbon balance is challenging.

➢ Here, we make use of observational and land model 

carbon flux data and adapt interpretable machine 

learning to quantify the effect of multi-scale 

meteorological events on forest carbon uptake.

Model Architecture

Our method of interpretable machine learning can quantify the 

effects of multi-scale and multi-variate meteorological events on 

the carbon balance of forest ecosystems.

➢ The interpretable machine learning method links model 

predictions to past meteorological events with respect to their 

position in time and time-scale.

➢ The method also determines the importance of the various 

meteorological predictors in modelling carbon anomalies.

➢ The machine learning model trained on observations fails to 

describe anomalies in the NEE data. This could be due to the 

limited amount of training data.
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A  Input variables: 10 variables + validation variable (random walk) as input

B  Wavelet-Transform: Time-series transformed into 2D image reflecting 

frequencies and their location in time

C  ResNet-18: Pre-trained Convolutional Neural Network architecture 

adapted from the field of computer vision

D  Model output: Net Ecosystem Exchange (NEE) from Fluxnet

Input variables for the observation-based model:

➢ Air Temperature (TA), vapor pressure deficit (VPD)

➢ Precipitation (Prcp), relative humidty (RH)

➢ Atmospheric Pressure (PA), wind speed (WS)

➢ Shortwave radiation (SW), potential SW (SW_P) 

Derivative of SW_P (DV_SW_P), Net radiation (NETRAD)

➢ Enhanced Vegetation Index (EVI)
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We use Integrated Gradients (IG) 

to interpret the machine learning 

model:

➢ IG is an Explainable Artificial 

Intelligence (XAI) method that 

returns for each input value, i.e. 

meteorological predictor in time 

and time-scale, an importance 

score for the predicted output, 

i.e. carbon balance, regarding a 

specific baseline. 

Model Peformance on unseen data

Model trained on land model data
We train the same model 

architecture with significantly 

more training data from a land 

model run with climate forcing 

(Res18_mod). The performance 

increases significantly.

The machine learning model trained on 

observations (Res18_obs) captures the 

seasonal cycle quite well, but fails to describe 

anomalies in the NEE data.

➢ Comparison between 

Baseline (mean 

seasonal cycle) and 

Res18_obs.

➢ NEE observations and 

Res18_obs prediction 

for multiple years at 

the DE-Hai test site.

➢ Comparison between Res18_obs and Res18_mod

➢ NEP land model output and 

Res18_mod prediction for multiple 

years at a forest pixel in Germany

Quantitative analysis

(Res18_obs) 
➢ Box and whisker plot of actual total IG importance for 

each input variable.

➢ IG importance image for VPD. Absolute IG importance 

scores are summed over all anomaly examples.

➢ Interpretation scheme of VPD (most important variable) 

for 2004 of the Hainich forest site in Germany

➢ Interpretation scheme of VPD (third most important 

variable) for 2003 of a forest pixel in Germany
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(Parts of this figure were created with BioRender.com)
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