H₂O-vesicle formation in the hybrid region of a bimodal melt system. An experimental progress.

Laura Lünenschloss¹, Patricia Louisa Marks¹, Marcus Nowak¹

Objectives of the study:

(i) Synthesis of a glass simulating the hybrid zone in a bimodal melt system.

(ii) An in-depth exploration of the mechanisms driving enhanced H₂O vesicle formation in the hybrid melt.

Geological background

volcanic eruption triggered by magma injection

Melt injections wrapped up in capsules

H₂O vesicle formation & growth

Reduction of H₂O-solubility in the hybrid zone⁽¹⁾

Alkali depletion in the hybrid zone⁽²⁾

> Magma mixing & magma mingling

Injection of a mafic melt into a rhyolitic magma chamber

H₂O-solubility experiments

(i) Melt hydration with H₂O excess in an internally heated argon pressure vessel (1523 K, 60 - 200 MPa, 96 h)

(ii) 0.5 h equilibration at 1323 K

(iii) Isobaric quench (16 or 97 K/s)

MATHEMATISCH-

Fachbereich Geowissenschaften

NATURWISSENSCHAFTLICHE FAKULTÄT

Preliminary results

EBERHARD KARLS

UNIVERSITÄ

ΓÜBINGEN

Outlook

(i) Decompression experiments of initially slightly H_2O undersaturated melts at rates of 1.7 - 0.17 MPa/s to final pressures of 60 - 100 MPa. (ii) Analysis of H₂O vesicle number density, spatial distribution and H₂O contents in decompressed and quenched melts with quantitative image analysis, FTIR - spectroscopy & calculation of equilibrium porosity Comparison of data with bimodal decompression experiments⁽²⁾

sources: (1) Allabar, A. et al. (2022) Mineral. Petr., 177(52)., (2) Marks, P. L. et al. (2023) J. Mineral., 35(4), 613-633., (3) Bas, M. L., et al. (1986) J. Petrol., 27(3), 745 - 750.

¹Eberhard Karls Universität Tübingen, Fachbereich Geowissenschaften, Experimentelle Mineralogie