Deciphering local from global signals in Portimão Bank sedimentary dynamics

Presented by Mélinda Martins

Universidade do Algarve (UAlg) Instituto Português do Mar e da Atmosfera (IPMA)

IPMA

Alg FCT

ERSIDADE DO ALGARVE

Unveiling Sedimentary Patterns

Procont -	PC06	<u>UNITS</u>	STRUCTURES	MEAN GRAIN <u>SIZE</u>	TEXTURES	<u>CARBONATES</u>	MINERALOGY	INTERPRETATION	
days	225 - 500 - 755 -	D	Low bioturbation	3-4 µm	Very slightly sandy silty clay (up to 56% clay)	High (up to 40%)	B: Planktonic foraminifera (>50%), and nannofossils (>40%)	Microfossil-rich mud	В
BP		С	Rare bioturbation, rare black lenticules	5-6 µm	Very slightly sandy clayey silt (up to 59% silt)	Moderate (up to 25%)	T-A: Clay minerals (>30%), and pyrite (up to 25%), as well as OM (up to 25%)	Clay-rich mud	
BP de so		В	Rare bioturbation, several black lenticules	From 3 to 4.5 µm	Clayey silt (up to 57% silt)	Moderate (<30%)	OM (>20%), and A : pyrite (>20%)	Pyritic organic-rich mud	т
49 kyr		Α	Rare bioturbation, dominated by black lenticules	Up to 6,3 µm	Very slightly sandy clayey silt (up to 64% silt)	Low to moderate (down to 17%)	T-B-A: Clay minerals (25%), nannofossils (30%), and pyrite (up to 40%)	Pyritic mud	

Objectives and Future Directions

Study Area

Dynamic region, hub for paleoenvironmental research.

Portimão Bank (PB)

Study Area

- From Vázquez and Alonso 2012
- Atlantic Ocean / Mediterranean Sea
- Current oceanographic pathways :
 - 1- Eastern North Atlantic Central Water (ENACW)
 - 2- Mediterranean Outflow Water (MOW)
 - 3- North Atlantic Deep Water (NADW)

PC06 Deep-Sea Core

- MONTERA-0412 scientific cruise
- B/O SARMIENTO DE GAMBOA
- Retrieved at 3520 m water depth

- Spans the last 49,000 years
- 324,5 cm long
- Many parts with very intense black lenticules that had not previously been studied

What's Core For ?

Multidisciplinary Approach

Sedimentological Analyses

DATA	METHOD	<u>SAMPLING</u> <u>RESOLUTION</u>	LOCATIONS	TEAM IN CHARGE	PRESENT WORK
Grain-size	Laser diffraction	55 samples	Institut de Ciències del Mar (ICM) Barcelona, Spain	MONTERA research team members	Statistical analysis, and interpretation
Carbonates	Volumetric method of Scheibler	55 samples			Interpretation
Organic matter	Loss on ignition	55 samples			
Smear slides	Sampled by hand 42 samples		Instituto Português do Mar e da Atmosfera (IPMA) Tavira, Portugal	IPMA	Grains counting, statistical analysis, and interpretation (20 samples)
Sand	Sampled by hand	16 samples		Present work	Grains counting, statistical analysis, and interpretation

Sedimentological Analyses

Malvern Mastersizer 3000

Calcimeter-Eijekelkamp

Binocular Microscope

Geochemical & Other Analyses

DATA	<u>METHOD</u>	<u>SAMPLING</u> <u>RESOLUTION</u>	LOCATIONS	TEAM IN CHARGE	PRESENT WORK	
Photos	MSCL	MSCL High-resolution photographs		MONTERA research team members	Imagery analysis, and interpretation	
Geochemical	YPE	4890	CORELAB		Interpretation	
contents		measurements	Barcelona University, Spain			
			Barcelona's Poznań	Age-depth model		
Datations	From ¹⁴ C	5 samples	Radiocarbon	realised at IPMA	Interpretation	
			Laboratory	Algés		

Geochemical & Other Analyses

Sedimentological characteristics

- Average of the mean grain-size : 3,99 µm (clay size)
- Made up of mud, 52% silt and 46% clay

e.g., "geometric method of moments" (in $\mu m)$ and Blott and Pye (2012) particle size classification

Mineralogy - Smear slides

			Average (%)				
Components (smear slides)			Backg sedir	round nents	Black lenticules		
	Clay	Biotite Chlorite	29		13		
Torrigonous	Quartz		10	48	7	32	
remgenous	Feldspar		4		3		
	Opaque grains		5		0		
	Heavy minerals		0		9		
	Nannofossils		44		10	15	
Biogenic	Foraminifera		2	46	5		
	Spong	je spicule	0		0		
	Pyrite		1		26	34	
Authigenic	Fe oxides		0	1	6		
	Gla	uconite	0		2		
Organic matter			5 19			9	

From Liu et al. 2019

Presence of Euhedral Pyrite

1- Decomposition of organic matter

2- Generation of hydrogen sulphide

3- Pyrite precipitation

Low oxygen conditions

GU

Outstanding Student & Phi

Sharing is

encouraged

Mineralogy Sand

Geochemical proxies

- Zr/AI ratio : bottom current indicator
- Si/(Si+AI) ratio : dry/wet conditions
- Ca/(Ca+Fe) ratio : paleoproductivity indicator
- Br/Ti ratio : marine organic matter accumulation indicator
- Br : marine organic carbon contents indicator

<u>N.B.</u> AI : Aluminium, Br : Bromine, Ca : Calcium, Fe : Iron, Ti: Titanium and Zr : Zirconium.

e.g., Moreno et al. 2005; Ziegler et al. 2008; Fink et al. 2013; López-González et al. 2013; Bahr et al. 2014; Rothwell and Croudace 2015; Stow et al. 2018

Unveiling Sedimentary Patterns

Procont -	PC06	<u>UNITS</u>	STRUCTURES	MEAN GRAIN <u>SIZE</u>	TEXTURES	<u>CARBONATES</u>	MINERALOGY	INTERPRETATION	
days	225 - 500 - 755 -	D	Low bioturbation	3-4 µm	Very slightly sandy silty clay (up to 56% clay)	High (up to 40%)	B: Planktonic foraminifera (>50%), and nannofossils (>40%)	Microfossil-rich mud	В
BP		С	Rare bioturbation, rare black lenticules	5-6 µm	Very slightly sandy clayey silt (up to 59% silt)	Moderate (up to 25%)	T-A: Clay minerals (>30%), and pyrite (up to 25%), as well as OM (up to 25%)	Clay-rich mud	
BP de so		В	Rare bioturbation, several black lenticules	From 3 to 4.5 µm	Clayey silt (up to 57% silt)	Moderate (<30%)	OM (>20%), and A : pyrite (>20%)	Pyritic organic-rich mud	т
49 kyr		Α	Rare bioturbation, dominated by black lenticules	Up to 6,3 µm	Very slightly sandy clayey silt (up to 64% silt)	Low to moderate (down to 17%)	T-B-A: Clay minerals (25%), nannofossils (30%), and pyrite (up to 40%)	Pyritic mud	

Unveiling Sedimentary Patterns

Final Remarks

Variations in the environmental changes at two different temporal scales:

- i. from the glacial (A to C) to interglacial (D) periods;
- ii. a short-scale local variations during the A to C unit sedimentation related to the presence of pyrite.

Acknowledgements

To my supervisors, Prof^a. Dr. Cristina Veiga-Pires, Dr. Gemma Ercilla and Dr. Teresa Drago;

To all the scientists involved in this work, especially, Prof. Dr. Paulo Fernandes, Dr. Filipa Naughton and Dr. Cristina Roque;

To the Instituto Português do Mar e da Atmosfera (IPMA)

To the University of Algarve (UAlg);

This work has not been possible without the contribution of the MONTERA (CTM 2009-14157-C02 CSIC), EDUCOAST (PTINNOVATION-067) and EMSO-PT (PINFRA/22157/2016) projects.

