

Meike Scherrenberg, Constantijn Berends and Roderik van de Wal

1 Main goals

Glacial cycle periodicity changed from 40 to 100 thousand years during the Mid-Pleistocene transition (~1 million years ago). What is the role of CO₂, insolation and albedo for ice sheet evolution?

2 Methods

Northern Hemisphere ice sheets are simulated using IMAU-ICE, our ice-sheet model.

Forcing is derived from interpolated climate time-slices. This interpolation depends on albedo, summer insolation and CO₂

Baseline

Temperature is driven by insolation, CO₂ and albedo.

If CO₂ is high enough during a summer insolation maximum,

Constant insolation | | | | | |

Summer insolation is kept constant at 5.8 GJ/m². Temperature change is caused by CO₂ and albedo.

CO₂ alone cannot capture Early Pleistocene

Reconstructions

Reconstructions are shown in grey:

- Spratt and Lisiecki et al. (2016) - δ¹⁸O
- Ahn et al. (2017)
- Yamamoto et al. (2022) - CO₂ Tzedakis et al. (2017) - Insolation

Early Pleistocene

- Terminations at obliquity maximum
- CO₂ roughly 230 ppm

Late Pleistocene Terminations

- Insolation maxima
- CO₂ at least 240 ppm.
- CO₂ and insolation high at the same time

Failed Terminations

- Insolation maximum
- CO₂ generally below 220 ppm.
- Low CO₂ compensates insolation maximum.

4 Conclusions

- The Mid-Pleistocene Transition can be simulated with only CO₂ and summer insolation as forcing.
- Deglaciations can be skipped if CO₂ is low enough.
- The carbon cycle controls CO₂ and therefore has a key role in the Mid Pleistocene Transition.

