

# **Comparison of Different Color Space Model's Performance for Estimation of Nitrate and Phosphate in Soil and** Water Using a Developed Smartphone-Integrated Imaging Device Lavanya Veerabhadrappa<sup>1</sup>, SubhdipDey<sup>2</sup> and Somsubhra Chakraborty<sup>3</sup>



| Soil and Water Sample Collection              |                                                                                                           |                                       |                                    |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|--|--|--|--|
| Districts (Total 6)                           | Blocks                                                                                                    | Soil<br>Samples<br>(Total no.<br>550) | Water<br>Samples<br>(Total no. 15) |  |  |  |  |
| Darjeeling<br>(Hilly Zone)                    | Matigara , Phansidewa, Kharibari , Naxalbari,<br>Karseaung                                                | 75                                    | Surface water samples from         |  |  |  |  |
| Birbhum (Red and<br>Lateritic Zone)           | Rampurhat-I, Mohammadbazar, Sainthia,<br>Labpur,<br>Nanur, Nalhati-I, Rajnagar, Khoirasole,<br>Illambazar | 115                                   | Kharagpur,<br>West Bengal          |  |  |  |  |
| Thargram<br>(Red and Lateritic<br>Zone)       | Gopiballavpur-1, Gopiballavpur- 2,<br>Nayagram, Jhargram, Sankrail, Jambani                               | 100                                   |                                    |  |  |  |  |
| Midnapur (East)<br>(Old Alluvial Zone)        | Tamluk, Pashkura, Kolaghat, Chandipur,<br>Contai, Deshopran, Egra-I, Nandakumar,<br>Khejuri               | 90                                    |                                    |  |  |  |  |
| Nadia<br>(New Alluvial Zone)                  | Haringhata, Chakdah, Ranaghat, Shantipur,<br>Hanskhali, Krishnanagar, Krishnaganj                         | 130                                   |                                    |  |  |  |  |
| South 24 Parganas<br>(Coastal Saline<br>Zone) | Gosaba, Canning-I, Kultali, Basanti                                                                       | 40                                    |                                    |  |  |  |  |

<sup>1</sup>Research Scholar, <sup>2</sup>Assistant Professor, <sup>3</sup>Associate Professor, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India







Evaluation of other color space models for predicting  $NO_3^-$  and  $PO_4^{3-}$  in soil and water

| Color models |   | Media | <b>R</b> <sup>2</sup> |                               | Equation                      |                                 |  |
|--------------|---|-------|-----------------------|-------------------------------|-------------------------------|---------------------------------|--|
|              |   |       | NO <sub>3</sub> -     | PO <sub>4</sub> <sup>3-</sup> | NO <sub>3</sub> -             | PO <sub>4</sub> <sup>3-</sup>   |  |
| СМҮК         | С |       | -                     | 0.97                          | -                             | $PO_4^{3-} = 0.0894x - 0.0561$  |  |
|              | Μ |       | 0.70                  | 0.95                          | $NO_3^- = 0.6369x - 1.6585$   | $PO_4^{3-} = 0.2009x - 0.2813$  |  |
|              | Y |       | 0.88                  | -                             | $NO_3^{-} = 0.4112x - 0.7563$ | -                               |  |
|              | K |       | 0.96                  | 0.81                          | $NO_3^- = 0.0964x - 0.9571$   | $PO_4^{3-} = 0.0858x - 0.8632$  |  |
| CIELAB       | L | Soil  | 0.98                  | 0.87                          | $NO_3^- = -0.0759x + 6.7784$  | $PO_4^{3-} = -0.0534x + 5.0189$ |  |
|              | Α |       | 0.99                  | 0.93                          | $NO_3^- = -1.5366x + 4.2537$  | $PO_4^{3-} = 0.2907x - 0.0115$  |  |
|              | В |       | 0.95                  | 0.96                          | $NO_3^- = 1.3761x + 0.0956$   | $PO_4^{3-} = -1.1916x + 1.8843$ |  |
| RGB          | R |       | 0.92                  | 0.97                          | $NO_3^- = -0.0173x + 3.9809$  | $PO_4^{3-} = -0.0427x + 10.084$ |  |
|              | G |       | 0.94                  | 0.92                          | $NO_3^- = -0.0242x + 5.419$   | $PO_4^{3-} = -0.0423x + 9.5789$ |  |
|              | В |       | 0.89                  | 0.98                          | $NO_3^- = -0.0237x + 5.3047$  | $PO_4^{3-} = -0.0668x + 15.198$ |  |
| HSV          | V |       | 0.98                  | 0.96                          | $NO_3^- = -0.1702x + 16.939$  | $PO_4^{3-} = -0.0259x + 2.4853$ |  |
| СМҮК         | С |       | -                     | 0.95                          | -                             | $PO_4^{3-} = 0.603x - 4.2021$   |  |
|              | Μ |       | 0.47                  | 0.96                          | $NO_3^- = 0.6574x - 1.4835$   | $PO_4^{3} = 0.8341x - 6.986$    |  |
|              | Y |       | 0.91                  | -                             | $NO_3^- = 0.4885x - 1.1713$   | -                               |  |
|              | K | Water | 0.88                  | 0.99                          | $NO_3^- = 0.1893x - 1.7946$   | $PO_4^{3-} = 1.1234x - 29.188$  |  |
| CIELAB       | L |       | 0.97                  | 0.99                          | $NO_3^- = -0.0816x + 7.2703$  | $PO_4^{3-} = -0.5558x + 38.817$ |  |
|              | Α |       | 0.98                  | 0.95                          | $NO_3^- = -1.1089x + 3.2134$  | $PO_4^{3-} = 1.6487x - 6.337$   |  |
|              | В |       | 0.97                  | 0.72                          | $NO_3^- = 1.0445x + 0.2174$   | $PO_4^{3-} = -1.4511x + 9.8734$ |  |
| RGB          | R |       | 0.99                  | 0.93                          | $NO_3^- = -0.0116x + 2.764$   | $PO_4^{3-} = -0.3006x + 66.588$ |  |
|              | G |       | 0.99                  | 0.92                          | $NO_3^- = -0.0108x + 2.5535$  | $PO_4^{3-} = -0.2846x + 61.016$ |  |
|              | В |       | 0.99                  | 0.97                          | $NO_3^- = -0.01x + 2.3565$    | $PO_4^{3-} = -0.7184x + 152.25$ |  |
| HSV          | V |       | 0.97                  | 0.98                          | $NO_3^- = -0.1175x + 11.874$  | $PO_4^{3-} = -0.4878x + 45.742$ |  |

### Conclusions

- The comprehensive analysis of RGB, CMYK, and CIELAB color space models, compared to the V component of the HSV color space model, yielded robust results, establishing the device's reliability in predicting  $NO_3^-$  and  $PO_4^{3-}$ concentrations in soil and water.
- The potential impact extends beyond research, as this costeffective sensing method assists scientists and farmers in efficiently gauging  $NO_3^-$  and  $PO_4^{3-}$  concentrations in soil and water, fostering a more accessible and sustainable approach to environmental monitoring.

### **Publications related to this study**

- Lavanya, V., Nayak, A., Dasgupta, S., Urkude, S., Dey, S., Biswas, A., Li B., Weindorf D. C., & Chakraborty, S. (2023a). A smartphone-integrated imaging device for measuring nitrate and phosphate in soil and water samples. Microchemical Journal, 193, 109042.
- Lavanya, V., Nayak, A., Deb Roy, P., Dasgupta, S., Dey, S., Li, B., Weindorf, D.C., & Chakraborty, S. (2023b). A Smartphone-Enabled Imaging Device for Chromotropic Acid-Based Measurement of Nitrate in Soil Samples. Sensors, 23(17), 7345.

## **Contact Details**

### Lavanya Veerabhadrappa

Research Scholar, Agricultural and Food Engineering Department, II Kharagpur, West Bengal, India; Email: lavanya810512013@gmail.c WhatsApp No: +91-9008798865.







/Lavanya Veerabhadrappa