Glacier changes at the top of the world – Over 70% of glacier volume in Everest region could be lost by 2100
If greenhouse-gas emissions continue to rise, glaciers in the Everest region of the Himalayas could experience dramatic change in the decades to come. A team of researchers in Nepal, France and the Netherlands have found Everest glaciers could be very sensitive to future warming, and that sustained ice loss through the 21st century is likely. The research is published today (27 May) in The Cryosphere, an open access journal of the European Geosciences Union (EGU).
“The signal of future glacier change in the region is clear: continued and possibly accelerated mass loss from glaciers is likely given the projected increase in temperatures,” says Joseph Shea, a glacier hydrologist at the International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal, and leader of the study.
The glacier model used by Shea and his team shows that glacier volume could be reduced between 70% and 99% by 2100. The results depend on how much greenhouse-gas emissions continue to rise, and on how this will affect temperature, snowfall and rainfall in the area.“Our results indicate that these glaciers may be highly sensitive to changes in temperature, and that increases in precipitation are not enough to offset the increased melt,” says Shea. Increased temperatures will not only increase the rates of snow and ice melt, but can also result in a change of precipitation from snow to rain at critical elevations, where glaciers are concentrated. Together, these act to reduce glacier growth and increase the area exposed to melt.
Glaciers in High Mountain Asia, a region that includes the Himalayas, contain the largest volume of ice outside the polar regions. The team studied glaciers in the Dudh Kosi basin in the Nepal Himalaya, which is home to some of the world’s highest mountain peaks, including Mt Everest, and to over 400 square kilometres of glacier area. “Apart from the significance of the region, glaciers in the Dudh Kosi basin contribute meltwater to the Kosi River, and glacier changes will affect river flows downstream,” says Shea.
Changes in glacier volume can impact the availability of water, with consequences for agriculture and hydropower generation. While increased glacier melt initially increases water flows, ongoing retreat leads to reduced meltwater from the glaciers during the warmer months, with greatest impact for the local populations before the monsoon when rainfall is scarce. Glacier retreat can also result in the formation and growth of lakes dammed by glacial debris. Avalanches and earthquakes can breach the dams, causing catastrophic floods that can result in river flows 100 times greater than normal in the Kosi basin.
To find out how glaciers in the region will evolve in the future, the team started by using field observations and data from local weather stations to calibrate and test a model of glacier change over the past 50 years. “To examine the sensitivity of modelled glaciers to future climate change, we then applied eight temperature and precipitation scenarios to the historical temperature and precipitation data and tracked how glacier areas and volumes responded,” says study co-author Walter Immerzeel of Utrecht University in the Netherlands.
Part of the glacier response is due to changes in the freezing level, the elevation where mean monthly temperatures are 0°C. “The freezing level currently varies between 3200 m in January and 5500 m in August. Based on historical temperature measurements and projected warming to the year 2100, this could increase by 800–1200m,” says Immerzeel. “Such an increase would not only reduce snow accumulations over the glaciers, but would also expose over 90% of the current glacierized area to melt in the warmer months.”
The researchers caution, however, that the results published in The Cryosphere should be seen as a first approximation to how Himalayan glaciers will react to increasing temperatures in the region. Patrick Wagnon, a visiting scientist at ICIMOD and glaciologist at the Institut de Recherche pour le Développement in Grenoble, France, says: “Our estimates need to be taken very cautiously, as considerable uncertainties remain.” For example, the model simplifies glacier movements, which impact how glaciers respond to increases in temperature and precipitation.
But the researchers stress in the paper that “the signal of future glacier change in the region is clear and compelling” and that decreases in ice thickness and extent are expected for “even the most conservative climate change scenario.”
###
Please mention the name of the publication (The Cryosphere) if reporting on this story and, if reporting online, include a link to the paper (http://www.the-cryosphere.net/9/1105/2015/tc-9-1105-2015.html) or to the journal website (http://www.the-cryosphere.net).
More information
This research is presented in the paper ‘Modelling glacier change in the Everest region, Nepal Himalaya’ published in the EGU open access journal The Cryosphere on 27 May 2015.
Citation: Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C., and Bajracharya, S.: Modelling glacier change in the Everest region, Nepal Himalaya, The Cryosphere, 9, 1105-1128, doi:10.5194/tc-9-1105-2015, 2015.
The team is composed of J.M. Shea (International Centre for Integrated Mountain Development [ICIMOD], Kathmandu, Nepal), W.W. Immerzeel (ICIMOD and Department of Physical Geography, Utrecht University, the Netherlands), P. Wagnon (ICIMOD and Laboratoire d’étude des transferts en hydrologie, Institut de Recherche pour le Développement, Grenoble, France), C. Vincent (Laboratoire de Glaciologie et Geophysique de l’Environnement, CNRS, Grenoble, France) and S. Bajracharya (ICIMOD).
The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2016 General Assembly is taking place in Vienna, Austria, from 17 to 22 April 2016. For information about meeting and press registration, please check http://media.egu.eu closer to the time of the conference, or follow the EGU on Twitter and Facebook.
If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.
Contact
Joseph Shea
Glacier Hydrologist
International Centre for Integrated Mountain Development (ICIMOD)
Kathmandu, Nepal
Phone +97715003222, x263
Email joseph.shea@icimod.org
X @JosephShea
Patrick Wagnon
Glaciologist and Visiting Scientist at ICIMOD
Laboratoired’étude des transferts en hydrologie, Institut de Recherche pour le Développement
Phone +97715003222, x263
Email Patrick.wagnon@icimod.org
Walter Immerzeel
Assistant Professor
Department of Physical Geography, Utrecht University
Utrecht, Netherlands
Phone +31 30 253 3888
Email W.W.Immerzeel@uu.nl
X @Immerzeel
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Phone +49 (0) 89 2180 6703
Email media@egu.eu
X @EuroGeosciences
Links
- Scientific paper
- Journal – The Cryosphere
- International Centre for Integrated Mountain Development
- Blog post by Joseph Shea on the study
- Read this press release in simplified language, aimed at 7–13 year olds, on our Planet Press site